2013年11月19日星期二

LED drivers on which all the necessary components are integrated

Global lighting consumption continues to increase: partly due to the shift to a 24-hour economy, by about 2050 worldwide lighting consumption is expected to be almost three times higher than it is now. More energy-efficient lighting methods therefore need to be explored. The “Advanced Sustainable Lighting Solutions” partnership is looking for high-efficiency, attractive and affordable lighting that is also developed in a responsible way. Such lighting systems can contribute to solutions for social challenges in a variety of areas such as food production, health and well-being.A call for proposals sent out to universities resulted in no fewer Agent of floodlight  After being evaluated by a committee of experts, eight projects were approved, which can be divided into two categories. Five projects are related to the exploration of new materials, the improvement of efficiency and the optimization of sustainable production of LEDs. The three remaining projects will examine how LED lighting can be used for health and energy savings, more efficient algae growth for biomass production and improved fruit quality.

“Advanced Sustainable Lighting Solutions” (ASLS) is one of the currently seven partnership programs of Technology Foundation STW for making Dutch science accessible with regard to specific questions from industry. The research projects in ASLS are to be conducted in the Netherlands, partly at universities, partly at Philips Research.In order to meet the growing demand for sustainable lighting, Technology Foundation STW and Philips have taken the initiative to form the ‘Advanced Sustainable Lighting Solutions’ partnership.Dr Eugenio Cantatore, Mixed-Signal Microelectronics Section, Electrical Engineering Department, Eindhoven University of Technology. LED drivers regulate the power supply to the array of LEDs that forms the lighting source. The objective of the project is to develop LED drivers on which all the necessary components are integrated, make external components as small as possible and the stabilize the power supply so that even powerful 100W lamps may be possible.

Dr Jos Haverkort, Photonics and Semiconductor Nanophysics Section, Applied Physics Department, Eindhoven University of Technology. The objective is to develop aluminum gallium phosphide (AlGaP) nanowires with a direct band gap, and hence high optical quality, and to demonstrate this by means of a green LED. This development aims to contribute to the development of white LED light without the need to use phosphor and of LEDs that can be set in RGB colors.Dr Arjan Houtepen, Opto-Electronic Materials Section, Chemical Engineering Department, Delft University of Technology. Colloidal quantum dots are regarded as ideal candidates to replace today’s Wholesale Led high bay light phosphors in LEDs as they can considerably increase LEDs’ efficiency. Existing quantum dot phosphors have disadvantages, however: they are cadmium-based, do not lead to stable photoluminescence in the long term, and they are difficult to build into the required matrix material. This project will deal with the development of an alternative: inorganic, indium phosphide-based quantum dots for converting to longer-wave light in LEDs.

没有评论:

发表评论